Solving linear programming problems using the graphical method
Example - designing a diet

A dietitian wants to design a breakfast menu for certain hospital patients. The menu is to include two items A and B. Suppose that each ounce of A provides 2 units of vitamin C and 2 units of iron and each ounce of B provides 1 unit of vitamin C and 2 units of iron. Suppose the cost of A is 4¢/ounce and the cost of B is 3¢/ounce. If the breakfast menu must provide at least 8 units of vitamin C and 10 units of iron, how many ounces of each item should be provided in order to meet the iron and vitamin C requirements for the least cost? What will this breakfast cost?
\[x = \text{#oz. of } A \]
\[y = \text{#oz. of } B \]

\begin{align*}
\text{vit. C:} & \quad 2x + y \geq 8 \\
\text{iron:} & \quad 2x + 2y \geq 10 \\
\text{x \geq 0, y \geq 0} & \quad x \geq 0, y \geq 0
\end{align*}

\text{Cost} = C = 4x + 3y
\[x = \# \text{oz. of A} \]
\[y = \# \text{oz. of B} \]

\[
\begin{align*}
\text{vit. C: } & 2x + y \geq 8 \\
\text{iron: } & 2x + 2y \geq 10 \\
& x \geq 0, \ y \geq 0
\end{align*}
\]

\[\text{Cost } = C = 4x + 3y \]
\[x = \# \text{oz. of A} \]
\[y = \# \text{oz. of B} \]

vit. C: \[2x + y \geq 8 \]
iron: \[2x + 2y \geq 10 \]
\[x \geq 0, \ y \geq 0 \]

Cost = \[C = 4x + 3y \]
\[
x = \text{#oz. of A} \\
y = \text{#oz. of B}
\]

vit. C: \[2x + y \geq 8\]
iron: \[2x + 2y \geq 10\]
\[
x \geq 0, \ y \geq 0
\]
Cost = \[C = 4x + 3y\]
\[x = \# \text{oz. of } A \]
\[y = \# \text{oz. of } B \]

- Vit. C: \[2x + y \geq 8 \]
- Iron: \[2x + 2y \geq 10 \]
 \[x \geq 0, \ y \geq 0 \]

Cost: \[C = 4x + 3y \]

The 3 blue lines are:
- \[48 = 4x + 3y \]
- \[36 = 4x + 3y \]
- \[24 = 4x + 3y \]

\[x = \# \text{oz. of A} \]
\[y = \# \text{oz. of B} \]
The cost will be minimized if the strategy followed is the one corresponding to this corner point.

Cost = $C = 4x + 3y$

The 3 blue lines are:
- $48 = 4x + 3y$
- $36 = 4x + 3y$
- $24 = 4x + 3y$

$x = \#\text{oz. of } A$
$y = \#\text{oz. of } B$
\[x = \# \text{oz. of A} \]
\[y = \# \text{oz. of B} \]

vit. C: \[2x + y \geq 8 \]
iron: \[2x + 2y \geq 10 \]
\[x \geq 0, \ y \geq 0 \]

\[2x + y = 8 \]
\[2x + 2y = 10 \]
\[x = \text{#oz. of A} \]
\[y = \text{#oz. of B} \]

\begin{align*}
\text{vit. C:} & \quad 2x + y \geq 8 \\
\text{iron:} & \quad 2x + 2y \geq 10 \\
& \quad x \geq 0, \ y \geq 0
\end{align*}

\[2x + y = 8 \]
\[2x + 2y = 10 \]

Solution: \(x=3, \ y=2 \)
\[C = 4x + 3y = 18\$ \]
\[x = \# \text{oz. of A} \]
\[y = \# \text{oz. of B} \]

\[
\begin{array}{c|c|c}
\text{corner pt.} & C = 4x + 3y & \\
(0,8) & 24 \text{ cents} & \\
(5,0) & 20 \text{ cents} & \\
(3,2) & 18 \text{ cents} & \\
\end{array}
\]
Example - bicycle factories

A small business makes 3-speed and 10-speed bicycles at two different factories. Factory A produces 16 3-speed and 20 10-speed bikes in one day while factory B produces 12 3-speed and 20 10-speed bikes daily. It costs $1000/day to operate factory A and $800/day to operate factory B. An order for 96 3-speed bikes and 140 10-speed bikes has just arrived. How many days should each factory be operated in order to fill this order at a minimum cost? What is the minimum cost?

\[x = \# \text{ days factory A is operated} \]
\[y = \# \text{ days factory B is operated} \]
\[x = \# \text{ days factory A is operated}\]
\[y = \# \text{ days factory B is operated}\]
\[x = \# \text{ days factory A is operated} \]
\[y = \# \text{ days factory B is operated} \]

3-speed constraint: \[16x + 12y \geq 96 \]
x = # days factory A is operated
y = # days factory B is operated
3-speed constraint: 16x + 12y ≥ 96
10-speed constraint: 20x + 20y ≥ 140
x ≥ 0, y ≥ 0
\begin{align*}
x &= \# \text{ days factory } A \text{ is operated} \\
y &= \# \text{ days factory } B \text{ is operated} \\
3\text{-speed constraint: } &16x + 12y \geq 96 \\
10\text{-speed constraint: } &20x + 20y \geq 140 \\
x \geq 0, \ y \geq 0 \\
\text{Minimize: } &C = 1000x + 800y
\end{align*}
\[x = \text{# days factory A is operated} \]
\[y = \text{# days factory B is operated} \]

3-speed constraint: \[16x + 12y \geq 96\]
10-speed constraint: \[20x + 20y \geq 140\]
\[x \geq 0, \ y \geq 0 \]

Minimize: \[C = 1000x + 800y\]
3-speed constraint: \(16x + 12y \geq 96 \)
10-speed constraint: \(20x + 20y \geq 140 \)
\(x \geq 0, y \geq 0 \)

Minimize: \(C = 1000x + 800y \)
x = # days factory A is operated
y = # days factory B is operated

3-speed constraint: $16x + 12y \geq 96$
10-speed constraint: $20x + 20y \geq 140$

$x \geq 0, y \geq 0$

Minimize: $C = 1000x + 800y$
x = # days factory A is operated
y = # days factory B is operated

3-speed constraint: 16x + 12y ≥ 96
10-speed constraint: 20x + 20y ≥ 140

x ≥ 0, y ≥ 0

Minimize: C = 1000x + 800y

corner pts C = 1000x + 800y

3-speed

10-speed
3-speed constraint: $16x + 12y \geq 96$
10-speed constraint: $20x + 20y \geq 140$

$x \geq 0, \ y \geq 0$

Minimize: $C = 1000x + 800y$

Corner pts:
- 3-speed: $(0,8)\ \ \ C = 10000 + 6400$
- 10-speed: $(8,0)\ \ \ C = 10000 + 0$

$C = 10000 + 6400$
$C = 10000 + 0$

$C = 6400$
$C = 10000$
3-speed constraint: $16x + 12y \geq 96$
10-speed constraint: $20x + 20y \geq 140$

Minimize: $C = 1000x + 800y$

$x \geq 0, y \geq 0$

Corner points:
- $(0,8): C = 6400$
- $(7,0): C = 7000$

$x = \# \text{ days factory } A \text{ is operated}$
$y = \# \text{ days factory } B \text{ is operated}$

COPYRIGHT © 2006 by LAVON B. PAGE
\[x = \text{\# days factory A is operated} \]
\[y = \text{\# days factory B is operated} \]

3-speed constraint: \(16x + 12y \geq 96 \)

10-speed constraint: \(20x + 20y \geq 140 \)

\[x \geq 0, \ y \geq 0 \]

Minimize: \(C = 1000x + 800y \)

\[
\begin{array}{c|c|c}
\text{corner pts} & C = 1000x + 800y & \\
(0,8) & $6400 & \\
(7,0) & $7000 & \\
(3,4) & $6200 & \\
\end{array}
\]
Example - ski manufacturing

Michigan Polar Products makes downhill and cross-country skis. A pair of downhill skis requires 2 man-hours for cutting, 1 man-hour for shaping and 3 man-hours for finishing while a pair of cross-country skis requires 2 man-hours for cutting, 2 man-hours for shaping and 1 man-hour for finishing. Each day the company has available 140 man-hours for cutting, 120 man-hours for shaping and 150 man-hours for finishing. How many pairs of each type of ski should the company manufacture each day in order to maximize profit if a pair of downhill skis yields a profit of $10 and a pair of cross-country skis yields a profit of $8?
\[x = \# \text{ pairs of downhill skis} \]
\[y = \# \text{ pairs of cross country skis} \]

- **cutting:** \[2x + 2y \leq 140 \]
- **shaping:** \[x + 2y \leq 120 \]
- **finishing:** \[3x + y \leq 150 \]
 \[x \geq 0, \quad y \geq 0 \]

\[P = 10x + 8y \]
x = # pairs of downhill skis
y = # pairs of cross country skis

cutting: \[2x + 2y \leq 140\]
shaping: \[x + 2y \leq 120\]
finishing: \[3x + y \leq 150\]

\[x \geq 0, y \geq 0\]

\[P = 10x + 8y\]
\[x = \# \text{ pairs of downhill skis}\]
\[y = \# \text{ pairs of cross country skis}\]

- **cutting:** \[2x + 2y \leq 140\]
- **shaping:** \[x + 2y \leq 120\]
- **finishing:** \[3x + y \leq 150\]

\[x \geq 0, y \geq 0\]

\[P = 10x + 8y\]
x = # pairs of downhill skis
y = # pairs of cross country skis

cutting: \(2x + 2y \leq 140 \)
shaping: \(x + 2y \leq 120 \)
finishing: \(3x + y \leq 150 \)
\(x \geq 0, y \geq 0 \)

\(P = 10x + 8y \)
x = # pairs of downhill skis
y = # pairs of cross country skis

cutting: $2x + 2y \leq 140$
shaping: $x + 2y \leq 120$
finishing: $3x + y \leq 150$

$x \geq 0, y \geq 0$

$P = 10x + 8y$
\(x = \# \) pairs of downhill skis
\(y = \# \) pairs of cross country skis

\[
\begin{align*}
\text{cutting:} & \quad 2x + 2y \leq 140 \\
\text{shaping:} & \quad x + 2y \leq 120 \\
\text{finishing:} & \quad 3x + y \leq 150 \\
& \quad x \geq 0 \text{, } y \geq 0
\end{align*}
\]

\(P = 10x + 8y \)
x = # pairs of downhill skis
y = # pairs of cross country skis

- cutting: \[2x + 2y \leq 140\]
- shaping: \[x + 2y \leq 120\]
- finishing: \[3x + y \leq 150\]

\[x \geq 0, \ y \geq 0\]

\[P = 10x + 8y\]

<table>
<thead>
<tr>
<th>corners</th>
<th>[P = 10x + 8y]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0)</td>
<td>$0</td>
</tr>
<tr>
<td>(0,60)</td>
<td>$480</td>
</tr>
<tr>
<td>(20,50)</td>
<td>$600</td>
</tr>
<tr>
<td>(40,30)</td>
<td>$640</td>
</tr>
<tr>
<td>(50,0)</td>
<td>$500</td>
</tr>
</tbody>
</table>
x = # pairs of downhill skis
y = # pairs of cross country skis

- cutting: \[2x + 2y \leq 140\]
- shaping: \[x + 2y \leq 120\]
- finishing: \[3x + y \leq 150\]
- \[x \geq 0, y \geq 0\]

Make 40 pairs of downhill skis and 30 pairs of cross country skis for a profit of $640

<table>
<thead>
<tr>
<th>corners</th>
<th>P = 10x + 8y</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0)</td>
<td>$0</td>
</tr>
<tr>
<td>(0,60)</td>
<td>$480</td>
</tr>
<tr>
<td>(20,50)</td>
<td>$600</td>
</tr>
<tr>
<td>(40,30)</td>
<td>$640</td>
</tr>
<tr>
<td>(50,0)</td>
<td>$500</td>
</tr>
</tbody>
</table>