Solutions: Exercises Functions

Exercise 0.1.7 In each case determine whether f is well-defined. Give reason for your answer.

1. $f : \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $f(n) = -n$ for all $n \in \mathbb{Z}$.
2. $f : \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x) = \sqrt{x}$ for all $x \in \mathbb{R}$.
3. $f : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x, y) = 2x + 3y$ for all $x, y \in \mathbb{R}$.
4. $f : \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x) = \frac{1}{x}$ for all $x \in \mathbb{R}$.
5. $f : \mathbb{Q} \rightarrow \mathbb{Z}$ defined by $f(\frac{m}{n}) = mn$ for all $m, n \in \mathbb{Z}$, $n \neq 0$.

Solutions:

1. If $n, m \in \mathbb{Z}$ such that $n = m$, then $f(n) = -n = -m = f(m)$. So f is well-defined.

2. Since $-1 \in \mathbb{R}$ and $\sqrt{-1} \notin \mathbb{R}$, f is not defined. So f is not a function.

3. Let (x, y) and (\hat{x}, \hat{y}) be two elements of $\mathbb{R} \times \mathbb{R}$ such that $(x, y) = (\hat{x}, \hat{y})$. Then $x = \hat{x}$ and $y = \hat{y}$. Now $f(x, y) = 2x + 3y = 2\hat{x} + 3\hat{y} = f(\hat{x}, \hat{y})$. Hence f is well-defined.

4. Since $0 \in \mathbb{R}$ and $\frac{1}{0} \notin \mathbb{R}$, f is not defined. So f is not a function.

5. f is not well-defined, because for example $\frac{2}{3} = \frac{4}{6}$ but $f(\frac{2}{3}) = 6 \neq f(\frac{4}{6}) = 24$.

Exercise 0.1.8 In each case determine whether the indicated function is onto, one-to-one, or bijective. Justify your answer.

1. $f : \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x) = 2 - 3x$ for all $x \in \mathbb{R}$.
2. $f : \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x) = 2x^2 + 3$ for all $x \in \mathbb{R}$.
3. $f : \mathbb{R} \rightarrow \mathbb{R}_{\geq 3}$ defined by $f(x) = 2x^2 + 3$ for all $x \in \mathbb{R}$.
4. $f : \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $f(n) = n^2 + n$ for all $n \in \mathbb{Z}$.
5. $f : \mathbb{N} \rightarrow \mathbb{N}$ defined by $f(n) = \left\{ \begin{array}{ll} \frac{n+1}{2} & \text{if } n \text{ is odd} \\ \frac{n}{2} & \text{if } n \text{ is even} \end{array} \right.$

Solutions:
1. If \(f(x) = f(y) \), then \(2 - 3x = 2 - 3y \). So \(3x = 3y \) and \(x = y \). Hence \(f \) is one-to-one. (1)

If \(y \in \mathbb{R} \), then we can find \(x \in \mathbb{R} \) such that \(f(x) = y \): For this we need to have \(2 - 3x = y \) which implies \(x = \frac{2 - y}{3} \). Now we can see that

\[
f(x) = f\left(\frac{2 - y}{3}\right) = 2 - 3\left(\frac{2 - y}{3}\right) = 2 - 2 + y = y.
\]

Hence \(f \) is onto. (2). Therefore by (1) and (2) \(f \) is a bijection.

2. \(f \) is not one-to-one: Because for example \(f(1) = f(-1) = 5 \), but \(1 \neq -1 \).

It is not difficult to see that

\[
\text{Im}(f) = \{ f(x) \mid x \in \mathbb{R} \} = \{ 2x^2 + 3 \mid x \in \mathbb{R} \} = \mathbb{R}_{\geq 3} \neq \mathbb{R}.
\]

So \(f \) is not onto.

3. By part 2 above we have \(f \) is not one-to-one. But \(\text{Im}(f) = \mathbb{R}_{\geq 3} \) implies that \(f \) is onto.

4. Since \(f(0) = f(-1) = 0 \) and \(0 \neq -1 \), \(f \) is not one-to-one. \(f \) is not onto since for example \(1 \in \mathbb{Z} \) but we can not find \(n \in \mathbb{Z} \) such that \(f(n) = n^2 + n = 1 \). Note that the equation \(n^2 + n - 1 = 0 \) has no integer solution.

5. Since

\[
f(1) = \frac{1+1}{2} = 1 \quad \text{and} \quad f(2) = \frac{2}{2} = 1
\]

we have \(f(1) = f(2) \). But \(1 \neq 2 \) implies that \(f \) is not one-to-one.

Let \(m \) be a natural number and let \(n = 2m \). Then \(f(n) = \frac{2m}{2} = m \). So \(f \) is onto.

Exercise 0.1.9 Let \(X \) and \(Y \) be two sets of three and two elements respectively. Show that there are eight functions from \(X \) into \(Y \) and nine functions from \(Y \) into \(X \). How many functions from \(X \) onto \(Y \) are there?

Solutions: Let \(X = \{a, b, c\} \) and \(Y = \{x, y\} \). Then the functions from \(X \) into \(Y \) are:

\[
\begin{align*}
&f_1 : a \to x, b \to x, c \to x & f_2 : a \to y, b \to y, c \to y \\
&f_3 : a \to x, b \to x, c \to y & f_4 : a \to y, b \to y, c \to x \\
&f_5 : a \to y, b \to x, c \to x & f_6 : a \to y, b \to x, c \to y \\
&f_7 : a \to x, b \to y, c \to y & f_8 : a \to y, b \to y, c \to x \\
\end{align*}
\]
It is easy to see that \(f_3, f_4, f_5, f_6, f_7 \) and \(f_8 \) are onto.

The functions from \(Y \) into \(X \) are:

\[
\begin{align*}
g_1 : & \quad x \to a, y \to a \\
g_2 : & \quad x \to b, y \to b \\
g_3 : & \quad x \to c, y \to c \\
g_4 : & \quad x \to a, y \to b \\
g_5 : & \quad x \to a, y \to c \\
g_6 : & \quad x \to b, y \to a \\
g_7 : & \quad x \to b, y \to c \\
g_8 : & \quad x \to c, y \to a \\
g_9 : & \quad x \to c, y \to b \\
\end{align*}
\]

Exercise 0.1.10 Let \(\mathbb{Z}^* \) denote the set of nonzero integers. Consider \(f : \mathbb{Z} \times \mathbb{Z}^* \to \mathbb{Q} \) defined by \(f(n, m) = \frac{n}{m} \). Show that \(f \) is a function. Determine whether \(f \) is one-to-one or onto.

Solution: If \((n, m) = (\hat{n}, \hat{m})\), then \(n = \hat{n} \) and \(m = \hat{m} \). Hence \(f(n, m) = \frac{n}{m} = \frac{\hat{n}}{\hat{m}} = f(\hat{n}, \hat{m}) \). So \(f \) is well-defined.

\(f \) is not one-to-one: Because for example \(f(2, 3) = f(4, 6) \), but \(2, 3 \neq (4, 6) \).

\(f \) is onto, since

\[
\text{Im}(f) = \left\{ \frac{n}{m} \mid n, m \in \mathbb{Z}, m \neq 0 \right\} = \mathbb{Q}.
\]

Exercise 0.1.11 Consider the function \(f : \mathbb{R} \to \mathbb{R} \) defined by \(f(x) = b + ax \) for all \(x \in \mathbb{R} \) where \(a \neq 0 \) and \(b \) are constant real numbers. Show that \(f \) is invertible and find \(f^{-1} \).

Solution: Similar to Ex.0.1.7 we can show that \(f \) is a bijection. Hence \(f \) is invertible. If \(f^{-1}(x) = y \), then \(f(y) = x \). That is \(b + ay = x \), and hence

\[
y = \frac{1}{a}x - \frac{b}{a}.
\]

So \(f^{-1}(x) = \frac{1}{a}x - \frac{b}{a} \). It is easy to check that \(f \circ f^{-1} = f^{-1} \circ f = 1_{\mathbb{R}} \).

Exercise 0.1.12 Show that if \(f : X \to Y \) and \(g : Y \to Z \) are functions, then \(g \circ f : X \to Z \) is also a function.

Solution: \(g \circ f : X \to Y \). Let \(x_1, x_2 \in X \) such that \(x_1 = x_2 \). Then since \(f \) is a function, we have \(f(x_1) = f(x_2) \). Now since \(g \) is function and \(f(x_1) = f(x_2) \), we must have \(g(f(x_1)) = g(f(x_2)) \). That is \((g \circ f)(x_1) = (g \circ f)(x_2) \). Hence \(g \circ f \) is well-defined.

Exercise 0.1.13 If \(f : X \to Y \) is a function, show that \(1_Y \circ f = f \) and \(f \circ 1_X = f \).

Solution: For all \(x \in X \) we have

\[
\begin{align*}
(1_Y \circ f)(x) &= 1_Y(f(x)) = f(x), \\
(f \circ 1_X)(x) &= f(1_X(x)) = f(x).
\end{align*}
\]

Exercise 0.1.14 If \(f : X \to Y \) and \(g : Y \to Z \) are both one-to-one (or both onto) functions, then show that \(g \circ f \) is also one-to-one (or onto).
Solution: Assume that f and g are one-to-one. Let $x_1, x_2 \in X$ such that $(g \circ f)(x_1) = (g \circ f)(x_2)$. Then we have $g(f(x_1)) = g(f(x_2))$. Now since g is one-to-one, we must have $f(x_1) = f(x_2)$. Since f is one-to-one, we deduce that $x_1 = x_2$. Therefore $g \circ f$ is one-to-one.

Assume that f and g are onto. We need to show that $g \circ f : X \rightarrow Z$ is onto. Let $z \in Z$. Since g is onto (from Y to Z), $\exists y \in Y$ such that $g(y) = z$.

Since $y \in Y$ and f is onto (from X to Y), $\exists x \in X$ such that $f(x) = y$. Now we have

$$(g \circ f)(x) = g(f(x)) = g(y) = z.$$

Hence $g \circ f$ is onto.

Exercise 0.1.15 (optional) Let $f : X \rightarrow Y$ be a function. Show that f is invertible if and only if f is both one-to-one and onto.

Solution: Assume that f is invertible and its inverse is f^{-1}. We will show that f is one-to-one and onto.

- f is one-to-one: Because if $f(x) = f(\hat{x})$ for some $x, \hat{x} \in X$, then since f^{-1} is a function we have $f^{-1}(f(x)) = f^{-1}(f(\hat{x}))$. That is $1_X(x) = 1_X(\hat{x})$, which implies $x = \hat{x}$.

- f is onto: Because if $y \in Y$, then $f^{-1}(y) \in X$ and $f(f^{-1}(y)) = 1_Y(y) = y$.

Conversely assume that f is one-to-one and onto. We will show that f is invertible. Since f is one-to-one and onto, for each y in Y, there is a unique x in X such that $f(x) = y$. Define $f^{-1} : Y \rightarrow X$ by $f^{-1}(y) = x$. Then f is a function and

$$(f \circ f^{-1})(y) = f(f^{-1}(y)) = f(x) \text{ and } (f^{-1} \circ f)(x) = f^{-1}(f(x)) = f^{-1}(y) = x.$$

So $f \circ f^{-1} = 1_X$ and $f^{-1} \circ f = 1_Y$. Thus f^{-1} is the inverse of f. Hence f is invertible.